发布时间:2019-05-29来源:冷拔六角管作者:六角钢管点击:
45号麻花管壁厚偏差
1、形状公差与尺寸公差的数值关系
当尺寸公差精度确定后,形状公差有一个适当的数值相对应,即一般约以50%尺寸公差值作为形状公差值;仪表行业约20%尺寸公差值作为形状公差值;重型行业约以70%尺寸公差值作为形状公差值。由此可见.尺寸公差精度愈高,形状公差占尺寸公差比例愈小所以, 在设计标注尺寸和形状公差要求时,除特殊情况外,当尺寸精度确定后,一般以50%尺寸公差值作为形状公差值,这既有利于制造也有利于确保质量。
2、形状公差与位置公差间的数值关系
形状公差与位置公差间也存在着一定的关系。从误差的形成原因看,形状误差是由机床振动、刀具振动、主轴跳动等原因造成;而位置误差则是由于机床导轨的不平行,工具装夹不平行或不垂直、夹紧力作用等原因造成,再从公差带定义看,位置误差是含被测表面的形状误差的,如平行度误差中就含有平面度误差,故位置误差比形状误差要大得多。因此,在一般情况下、在无进一步要求时,给了位置公差,就不再给形状公差。当有特殊要求时可同时标注形状和位置公差要求,但标注的形状公差值应小于所标注的位置公差值,否则,生产时无法按设计要求制造零件。
3、形状公差与表面粗糙度的关系
形状误差与表面粗糙度之间在数值和测量上尽管没有直接联系,但在一定的加工条件下两者也存在着一定的比例关系,据实验研究,在一般精度时,表面粗糙度占形状公差的1/5~1/4。由此可知,为确保形状公差,应适当限制相应的表面粗糙度高度参数的大允许值。
在一般情况下,尺寸公差、形状公差、位置公差、表面粗糙度之间的公差值具有下述关系式:尺寸公差>位置公差>形状公差>表面粗糙度高度参数
从尺寸、形位与表面粗糙度的数值关系式不难看出, 设计时要协调处理好三者的数值关系, 在图样上标注公差值时应遵循:给定同一表面的粗糙度数值应小于其形状公差值; 而形状公差值应小于其位置公差值;位置各差值应小于其尺寸公差值。否则,会给制造带来种种麻烦。可是设计工作中涉及多的是如何处理尺寸公差与表面粗糙度的关系和各种配合精度与表面粗糙度的关系。
一般情况下按以下关系确定:
1、形状公差为尺寸公差的60%(中等相对几何精度)时,Ra≤0.05IT;
2、形状公差为尺寸公差的40%(较高相对几何精度)时,Ra≤0.025IT;
3、形状公差为尺寸公差的25%(高相对几何精度)时,Ra≤0.012IT;
4、形状公差小于尺寸公差的25%(超高相对几何精度)时,Ra≤0.15Tf(形状公差值)。
简单的参考值:尺寸公差是粗糙度的3-4倍,这样为经济.
二、形位公差的选择
1、形位公差项目的选择
应充分发挥综合控制项目的职能,以减少图样上给出的形位公差项目及相应的形位误差检测项目。
在满足功能要求的前提下,应选用测量简便的项目。如:同轴度公差常常用径向圆跳动公差或径向圆跳动公差代替。不过应注意,径向圆跳动是同轴度误差与圆柱面形状误差的综合,故代替时,给出的跳动公差值应略大于同轴度公差值,否则就会要求过严。
2、公差原则的选择
应根据被测要素的功能要求,充分发挥公差的职能和采取该公差原则的可行性、经济性。
原则用于尺寸精度与形位精度精度要求相差较大,需分别满足要求,或两者无联系,保证运动精度、密封性,未注公差等场合。
包容要求主要用于需要严格保证配合性质的场合。
大实体要求用于中心要素,一般用于配件要求为可装配性(无配合性质要求)的场合。
小实体要求主要用于需要保证零件强度和小壁厚等场合。
可逆要求与大(小)实体要求联用,能充分利用公差带,扩大了被测要素实际尺寸的范围,提高了效益。在不影响使用性能的前提下可以选用。
3、基准要素的选择
1)基准部位的选择
(1)选用零件在机器中定位的结合面作为基准部位。例如箱体的底平面和侧面、盘类零件的轴线、回转零件的支承轴颈或支承孔等。
(2)基准要素应具有足够的大小和刚度,以保证定位稳定可靠。例如,用两条或两条以上相距较远的轴线组合成公共基准轴线比一条基准轴线要稳定。
(3)选用加工比较精确的表面作为基准部位。
(4)尽量使装配、加工和检测基准统一。这样,既可以因基准不统一而产生的误差;也可以简化夹具、量具的设计与制造,测量方便。
2).基准数量的确定
一般来说,应根据公差项目的定向、定位几何功能要求来确定基准的数量。定向公差大多只要一个基准,而定位公差则需要一个或多个基准。例如,对于平行度、垂直度、同轴度公差项目,一般只用一个平面或一条轴线做基准要素;对于位置度公差项目,需要确定孔系的位置精度,就可能要用到两个或三个基准要素。
3).基准顺序的安排
当选用两个以上基准要素时,就要明确基准要素的次序,并按第一、第二、第三的顺序写在公差框格中,第一基准要素是主要的,第二基准要素次之。
4、形位公差值的选择
总的原则:在满足零件功能的前提下,选取经济的公差值。
◆根据零件的功能要求,考虑加工的经济性和零件的结构、刚性,按表确定要素的公差值。并考虑以下因素:
◆同一要素给出的形状公差应小于位置公差值;
◆圆柱形零件的形状公差值(轴线的直线度除外)应小于其尺寸公差值;如同一平面上,平面度公差值应小于该平面对基准的平行度公差值。
◆平行度公差值应小于其相应的距离公差值。
◆表面粗糙度与形状公差的大概的比例关系:通常,表面粗糙度的Ra值可取为形状公差值的(20%~25%)。
◆对于以下情况,考虑到加工的难易程度和除主参数以外的其它因素的影响,在满足零件功能的要求下,适当降低1~2级选用:
○孔相对于轴;
○细长比较大的轴和孔;距离较大的轴和孔;
○宽度较大(大于1/2长度)的零件表面;
○线对线和线对面的相对于面对面的平行度、垂直度公差。
5、形位未注公差的规定
为简化制图,对一般机床加工就能保证的形位精度,不必在图样上注出形位公差,形位未注公差按GB/T1184-1996的规定执行。大致内容如下:
(1)对未注直线度、平面度、垂直度、对称度和圆跳动各规定了H、K、L三个公差等级.
(2)未注圆度公差值等于直径公差值,但不能大于径向圆跳动的未注公差值。
(3)未注圆柱度公差值不作规定,由要素的圆度公差、素线直线度和相对素线平行度的注出或未注公差控制。
(4)未注平行度公差值等于被测要素和基准要素间的尺寸公差和被测要素的形状公差(直线度或平面度)的未注公差值中的较大者,并取两要素中较长者作为基准。
(5)未注同轴度公差值未作规定。必要时,可取同轴度的未注公差值等于圆跳动的未注公差。
(6)未注线轮廓度、面轮廓度、倾斜度、位置度的公差值均由各要素的注出或未注线性尺寸公差或角度公差控制。
(7)未注全跳动公差值未作规定。
6、形位未注公差值的图样表示
若采用GB/T1184-1996规定的未注公差值,应在标题栏或技术要求中注出标准及等级代号。 :“GB/T1184—K”。
硬度随回火温度的升高而下降,但在淬火状态以及300℃以下低温回火时,硬度与抗拉强度的关系难以成立。当回火温度在300℃左右时,kg/m㎡与HRC具有相关关系,即硬度高,抗拉强度就高;硬度低,抗拉强度就低。在低温回火状态欲求出kg/m㎡值是很困难的,因为此时抗拉强度值分布很离散。
由于低温回火件的kg/m㎡不稳定而不能确定,故在日本工业标准(JIS)中也是通试验来测定400℃以上温度回火件的拉伸特性(也有300℃回火工件)。换言之是只对调质件(淬火+400℃回火)进行拉伸试验。在工业上只是在要求抗旋转弯曲疲劳和抗磨损时才使用低温回火件。高频淬火和渗碳淬火即为此适用例。受拉应力的零件不采用低温回火。不过在低碳钢中,但淬火M能发生自回火(故Ms点高)时,亦有在淬火状态下使用者。低碳钢的板条马氏体组织结构自回火,正可在工业上应用,但此时必须考虑淬透性和质量效应(必要时应添加B、Cr、Mn等金属元素)。
钢管无缝钢管精密钢管等的材料在炼钢过程中,少量炉渣、耐火材料及冶炼中反应产物可能进入钢液,形成非金属夹杂物。它们都会降低钢的机械性能,特别是降低塑性、韧性及疲劳极限。严重时,还会使钢在热加工与热处理时产生裂纹或使用时突然脆断。非金属夹杂物也促使钢形成热加工纤维组织与带状组织,使材料具有各向异性。
无缝钢管和精密钢管的材料中含有的一类具有非金属特性的组成物。它们在金属和合金的熔炼、凝固过程中产生,并在随后的热、冷加工过程中经历一系列变化,对金属和合金的性能产生多方面的影响。
根据非金属夹杂物(以下简称夹杂物)的来源,通常把夹杂物分为外来的和内生的两大类。混入金属中的炉衬耐火材料或炉渣颗粒(包括刚带入的、或与金属液发生化学反应而在成分和结构上已有相当大改变的)属于外来夹杂物;在熔炼、凝固过程中,熔融金属中含有的各化学元素的化学反应产物,来不及排除,仍保留在固态金属中,称为内生夹杂物。
按夹杂物的力学性能分类 非金属夹杂物破坏了金属基体的连续性。当金属制品承受载荷时,夹杂物会引起应力集中,使材料易生裂纹。在经过变形加工的金属中,非金属夹杂物的形状取决于夹杂物相对于金属基体的形变程度,随夹杂物的成分和金属(钢)的形变温度而异。
按夹杂物的形变情况,夹杂物可分为四类:
①脆性夹杂物 指那些不具有范性的简单氧化物和复杂氧化物以及氮化物;当钢经热加工变形时,这类夹杂物的形状和尺寸不发生变化,但夹杂物的分布有变化。氧化物和氮化物夹杂均可沿钢延伸方向排列成串,呈点链状。属于这类的有Al2O3、Cr2O3,尖晶石氧化物,钒、钛、钴的氮化物以及其他一些高熔点夹杂物。
②范性夹杂物 这类夹杂物在钢经受加工变形时具有良好范性,沿着钢的流变方向延伸成条带状。属于这类的有硫化物,含SiO2量较低(40~60%)的铁锰硅酸盐和其中溶有FeO、MnO、Al2O3的硅酸钙和硅酸镁等。
③球状(或点状)不变形夹杂物 在铸态钢中呈球状;经形变加工后,夹杂物保持球形不变。属于这类的有SiO2、含SiO2较高(>70%)的硅酸盐、钙的铝酸盐、纯的硅酸钙和纯的硅酸铝等。